

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

Coarse-to-Fine Multi-Class Multi-Object Tracking (COFE)

Task: Multi-Object Tracking

Yuhang He, Wentao Yu, Jie Han, Xiaopeng Hong, Xing Wei, and Yihong Gong Xi'an Jiaotong University (XTJU), P.R.C.

1. Introduction

Goal: Track multi-class multi-object in different scenarios.

Key Insight: Interactive and mutual occluded targets are semantically discriminative in coarse categories.

2.1 Algorithm Overview

2.2 Multi-class object detection

- Baseline: Cascade R-CNN
- Backbone: resnet50
- FPN, DCN

2.3 Coarse-category multi-object tracking

1. Summarize fine-grained classes into coarse category

- (Van, Bus, Car and Truck)-> Vehicle
- Pedestrian
- 2. Link detections into Coarse categories trajectories by appearance and motion information
- Extract appearance features by OSNet (msmt17)
- Predict motion information by Kalman Filter
- Solve data association based on Hungarian algorithm

Figure 2: A schematic of the proposed building block for OSNet. R: Receptive field size.

2.3 Coarse-category multi-object tracking

2. Link detections into Coarse categories trajectories by appearance and motion information

Listing 1 Matching Cascade **Input:** Track indices $\mathcal{T} = \{1, \ldots, N\}$, Detection indices $\mathcal{D} =$ $\{1,\ldots,M\}$, Maximum age A_{\max} 1: Compute cost matrix $C = [c_{i,j}]$ using Eq. 5 2: Compute gate matrix $\boldsymbol{B} = [b_{i,j}]$ using Eq. 6 3: Initialize set of matches $\mathcal{M} \leftarrow \emptyset$ 4: Initialize set of unmatched detections $\mathcal{U} \leftarrow \mathcal{D}$ 5: for $n \in \{1, ..., A_{\max}\}$ do Select tracks by age $\mathcal{T}_n \leftarrow \{i \in \mathcal{T} \mid a_i = n\}$ 6: 7: $[x_{i,j}] \leftarrow \min_cost_matching(\boldsymbol{C}, \mathcal{T}_n, \mathcal{U})$ 8: $\mathcal{M} \leftarrow \mathcal{M} \cup \{(i, j) \mid b_{i,j} \cdot x_{i,j} > 0\}$ 9: $\mathcal{U} \leftarrow \mathcal{U} \setminus \{j \mid \sum_{i} b_{i,j} \cdot x_{i,j} > 0\}$ 10: end for 11: return \mathcal{M}, \mathcal{U}

2.4 Fine-grained trajectory finetuning

- 1. finetune fine-grained class label by voting
- 2. refine the tracking results by post processing
- Trajectory padding, smoothing

3. Experimental Results

rank	team	mAP
1	visDrone-MOT	61.88
2	DeepBlueAl-MOT	57.65
3	Daniel Stadler	50.80
4	Julyyyyy	42.11
5	Zhizhao Duan	42.10
6	Li Peng	38.05
7	shengwen li	35.76

The proposed method COFE achieves the best result and significantly outperforms state-of-the-art methods by a large margin

Thanks !