

Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality Collaboration

<u>Yuhang He</u>, Wentao Yu, Jie Han, Xing Wei, Xiaopeng Hong, Yihong Gong Xi'an Jiaotong University (XJTU), P.R.China

Accepted as full paper, winner of 2D detection and tracking tracks

1. Multi-Object Tracking

Goal

 locate the positions of interested targets, maintain their identities across frames and infer a complete trajectory for each target.

Difficulties

- Limitation of camera field-of-view.
- Tracking failures in complex scenarios such as poor light conditions and background clutters.

(a) Limitation of Field-of-view

(b) Tracking Failures in Complex Scenarios

1. Multi-Object Tracking

- Key Insights
 - A wider vision brings more information.
 - Singular modality is biased while multimodality complements each other.

Solutions

- Propose a MultiModality PAnoramic multiobject Tracking framework (MMPAT).
- Take 2D 360° panorama images and 3D LiDAR point clouds as input and generate trajectories for targets by multimodality collaboration.

> 2.1 The Proposed Framework

2.2 Object Detection in Panorama Image

2.2 Object Detection in Panorama Image

• Panorama image split:

Split the panorama image I_t into N image slices $\mathcal{I}_t = \{I_t^n\}_{n=1}^N$ along the width dimension with an overlap of 0.2.

• Cascade object detector:

Detect objects in each image slice by a deformable convolution network, a region proposal network and a cascade detection header.

• Detection merge:

Merge detection responses from all the image slices by non-maximum suppression (NMS): $\mathcal{B}_t = NMS(\mathcal{B}_t(1), \dots, \mathcal{B}_t(N))$.

- 2.3 Multimodality Data Fusion
 - Perform instance segment in the 2D bounding box to filter out the background clutters.
 - Collect 3D points of the target based on 3D-to-2D projection.

 $\mathcal{P} = \{h | \forall h \in \Omega_{ptc}, if \rho(h; M) \in \Omega_{box} \}$

• Obtain the 3D location l_t^v of detection B_t^v by averaging the 3D points of detection B_t^v .

- 2.4 Data Association
 - Affinity Measurement:

$$A(u,v) = \psi_{app}(\mathcal{T}_{t-1}^{u}, \mathcal{B}_{t}^{v}) + \psi_{mot}(\mathcal{T}_{t-1}^{u}, \mathcal{B}_{t}^{v}) + \psi_{loc}(\mathcal{T}_{t-1}^{u}, \mathcal{B}_{t}^{v})$$

$$\sum_{\forall k \in \tau^{u}} \left[e^{k-t} \cdot \gamma(a_{k}^{u}, \phi(\mathcal{B}_{t}^{v})) \right]$$

• Appearance similarity:
$$\psi_{app}(\mathcal{T}_{t-1}^{u}, \mathcal{B}_{t}^{v}) = \frac{\sum_{\forall k \in \tau_{t-1}^{u}} e^{k-v} \varphi(u_{k}, \phi)}{\sum_{\forall k \in \tau_{t-1}^{u}} e^{k-t}}$$

• Motion affinity: $\psi_{mot}(\mathcal{T}^{u}_{t-1}, \mathcal{B}^{v}_{t}) = area(\mathcal{O}^{u}_{t} \cap \mathcal{B}^{v}_{t})/area(\mathcal{O}^{u}_{t} \cup \mathcal{B}^{v}_{t})$

• Location proximity:
$$\psi_{loc}(\mathcal{T}_{t-1}^u, \mathcal{B}_t^v) = \sum_{k \in \tau_{t-1}^u} \frac{\sigma_t(k, t) \cdot \sigma_l(\mathcal{T}_{t-1}^u(k)_{loc}, l_t^v)}{|\tau_k^u|}$$

• Bipartity Graph Matching:

$$X^* = \underset{X}{\operatorname{argmax}} \|A \odot X\|_2, \qquad s.t. \ \forall u, \sum X(u, :) \le 1, \forall v, \sum X(:, v) \le 1,$$

- > 2.5 Trajectory Inference
 - Detection \mathcal{B}_t^{ν} does not match with any trajectories.
 - Trajectory \mathcal{T}_{t-1}^{u} is matched with detection \mathcal{B}_{t}^{v} .
 - Trajectory \mathcal{T}_{t-1}^{u} does not match with any detections.

> 2.6 Experiment:

\mathbf{v}	1. Detection results on the JICD Dut				
	Method	$AP\uparrow$	Runtime \downarrow		
_	YOLOV3 [61]	41.73	0.051		
	DETR [9]	48.51	0.350		
	RetinaNet [45]	50.38	0.056		
	Faster R-CNN [62]	52.17	0.038		
	Ours	67.88	0.070		

Table 1. Detection results on the JRDB Dataset

 Table 2. Tracking Results On the JRDB Dataset

Method	MOTA \uparrow	IDS ↓	FP↓	$FN\downarrow$
Tracktor [1]	19.7	7026	79573	681672
DeepSORT [76]	23.2	5296	78947	650478
JRMOT [69]	22.5	7719	65550	667783
Ours	31.7	5742	67171	580565

> 2.6 Experiment:

2. Error-Aware Density Isomorphism Reconstruction for Unsupervised Cross-Domain Crowd Counting

> 2.6 Experiment:

¥ 5	
Method	$AP\uparrow$
Deseline	52.0
Baseline	52.8
Baseline+DCN	53.1
Baseline+DCN+split	64.6
Baseline+DCN+split+mixup	68.2
	00.2
Baseline+DCN+split+mixup+multiscale	69.7
Baseline+DCN+split+mixup+multiscale+softnms	70.7

Table 3. Ablation Study on Object Detection

Thank you!