City-Scale Multi-Camera Vehicle Tracking by Semantic Attribute Parsing and Cross-Camera Tracklet Matching

Al City Challenge 2020, CVPR Workshop, Seattle

Yuhang He, Jie Han, Wentao Yu, Xiaopeng Hong*, Xing Wei, and Yihong Gong Xi'an Jiaotong University (XTJU), P.R.C.

1. Introduction

1.1 Background

Goal : Track multiple vehicles in a city-scale multi-camera network.

Applications:

- Traffic flow management;
- Vehicle behavior analysis;
- Traffic anomaly detection;
- Auto-driving assistant;

1. Introduction

1.2 Main Challenge

- Generate local tracklet in each camera Cross-camera tracklet matching: (Single-camera multi-object tracking)
 - Object occlusion;
 - Background clutter;
 - Target interaction;
 - Targets enter and exit

- - Visual appearance variations caused by different viewpoints;
 - The unknown target status caused by blind areas
 - The Occurrences of targets are different and unknown.

. . .

3.1 Algorithm Overview

	Alg	orithm 1 Tracking algorithm of the proposed method		
	In	out: Image sequences collected from M cameras $\mathcal{I} =$		
		$\{\mathcal{I}_1, \mathcal{I}_2,, \mathcal{I}_M\}.$		
	[T 1 / 1 1 /		
	1:	for camera $i = 1 : M$ do		Local tracklet
	2:	Generate local tracklet set \mathcal{T}_i using single camera		generation
		multi-object tracking technique.	L	
	3:	end for		
Semantic attribute	4:	Generate robust representation f_i^2 of each tracklet \mathcal{I}'_i		
parsing		using Eq. (9) and prune infeasible matching candidates		
Par 8		by traffic topology reasoning.		
	5:	Construct tracklet similarity matrix S using Eq. (10).		Cross-camera
Tracklet_to_Target	6:	Compute tracklet-to-target assignment matrix A* by		tracklet matching
		optimizing Eq. (11).	l	in a chief matering
assignment	7:	Generate global trajectory set \mathcal{G} according to \mathbf{A}^* .		

3.2 Local Tracklet Generation

1. Detect target with an object detector

- Getting the detection collection \mathcal{D}_i of the whole image sequence \mathcal{I}_i of camera *i*.

2. Link detections into local tracklets by graph clustering

- Construct a graph model G = (V, E) based on \mathcal{D}_i .

 $w_{x,y} = \psi(v_x, v_y)$

- Get the local tracklet collection T_i of camera *i* by graph clustering

3.3 Semantic Attribute Parsing

1. Robust Tracklet Representation — Feature Extractor $\varphi(\cdot)$

- Backbone: ResNet50
- Cross-entropy loss: identity classification

$$y'_{i}(u) = \begin{cases} 1 - \frac{H-1}{H}\eta & \text{if } y_{i}(u) = 1, \\ \frac{\eta}{H} & \text{otherwise,} \end{cases} \qquad L'_{xent}(\mathbf{I}_{i}) = -\sum_{u=1}^{H} \log(p_{i}(u)) \cdot y'_{i}(u)$$

- **Triplet loss:** metric learning

 $L_{trip}(\mathcal{I}_i) = \left[\|\varphi(\mathbf{I}_i^a) - \varphi(\mathbf{I}_i^p)\|_2 - \|\varphi(\mathbf{I}_i^a) - \varphi(\mathbf{I}_i^n)\|_2 + m \right]_+$

- Overall objective function:

$$L = \sum_{i=1}^{O} L'_{xent}(\mathbf{I}_i) + \lambda L_{trip}(\mathcal{I}_i)$$

3.3 Semantic Attribute Parsing

1. Robust Tracklet Representation — Spatial-Temporal Attention

 n^{j^*}

- Spatial attention mechanism:
- Temporal attention mechanism:
- Robust feature representation:

$$\mathbf{C}_{i,t}^{s} = \mathbf{C}_{i,t}^{s} \odot \mathbf{M}_{i,t}^{s}$$
$$w_{i,t}^{j} = \frac{||\mathbf{M}_{i,t}^{j}||_{2}}{\sum_{t \in \pi_{i}^{j}} ||\mathbf{M}_{i,t}^{j}||_{2}}$$
$$\mathbf{f}_{i}^{j} = \sum_{t \in \pi_{i}^{j}} \varphi(\mathbf{C}_{i,t}^{j^{*}}) \cdot w_{i,t}^{j}$$

3.3 Semantic Attribute Parsing 2. Traffic Topology Reasoning

Objective:

- Prune infeasible matching candidates.

$$\delta(\mathcal{T}_i^u, \mathcal{T}_j^v) = \begin{cases} 1 & \text{if } \mathcal{T}_i^u, \mathcal{T}_j^v \text{ traffic connected,} \\ \\ 0 & \text{otherwise,} \end{cases}$$

3.4 Tracklet-to-Target Assignment [2]

1. Illustration of tracklet-to-target assignment

Tracklet-to-Tracklet Matching

Tracklet-to-Target Assignment

He, Y., Wei, X., Hong, X., Shi, W., & Gong, Y. (2020). Multi-Target Multi-Camera Tracking by Tracklet-to-Target Assignment. *IEEE Transactions on Image Processing*, 9 29, 5191-5205.

3.5 Tracklet-to-Target Assignment

- 2. Advantages
 - Smaller solution space. $N \times N \rightarrow N \times K$

- Determined assignment relationship:

Each tracklet should be assigned to a target

- Matching consistency naturally satisfied.

3.4 Tracklet-to-Target Assignment

3. Method formulation

Tracklet-Tracklet Similarity Matrix: $\mathbf{S} \in [0,1]^{N \times N}$

Tracklet-Target Assignment Matrix: $\mathbf{A} \in \{0,1\}^{N \times K}$

3.4 Tracklet-to-Target Assignment

3. Method formulation

Intuition:
$$\begin{cases} \mathbf{S}(u,v) \to 1 \Rightarrow \mathbf{A}(u,:)\mathbf{A}(v,:)^{T} = 1 \\ \mathbf{S}(u,v) \to 0 \Rightarrow \mathbf{A}(u,:)\mathbf{A}(v,:)^{T} = 0 \end{cases}$$
$$\Rightarrow \mathbf{A}\mathbf{A}^{T} \to \mathbf{S}$$
Objective
$$\mathbf{A}^{*} = \underset{\mathbf{A}}{\operatorname{argmin}} \|\mathbf{S} - \mathbf{A}\mathbf{A}^{T}\|_{2},$$
s.t $\mathbf{A}\mathbf{I}_{1} = \mathbf{I}_{2},$

3.4 Tracklet-to-Target Assignment

4. Restricted non-negative matrix factorization

Relax constraint:
$$\mathbf{A}'^* = \underset{\mathbf{A}' \geq 0}{\operatorname{argmin}} \|\mathbf{S} - \mathbf{A}'\mathbf{A}'^T\|^2 + \alpha \|\mathbf{A}'\mathbf{1}_1 - \mathbf{1}_2\|^2,$$

Updating Rule:
$$\mathbf{A}' \leftarrow \mathbf{A}' \odot \operatorname{sqrt}([4\mathbf{S}\mathbf{A}' + 2\alpha \mathbf{1}_2\mathbf{1}_1^T] \oslash [4\mathbf{A}'\mathbf{A}'^T\mathbf{A}' + 2\alpha \mathbf{A}'\mathbf{1}_1\mathbf{1}_1^T]),$$

4. Experimental Results

Main results

Rank	Team ID	IDF1 (%)
1	92	45.85
2	11	44.00
3	63	34.83
4	111	34.11
5	72	12.48
6	75	6.20
7	30	4.52
8	31	3.87

The proposed method achieves the second-best result and significantly outperforms most of the competitive methods by a large margin

4. Experimental Results

Ablation study

Method	IDF1 (%)	IDP (%)	IDR (%)
baseline	31.28	23.29	35.12
baseline+ST	34.51	29.54	41.50
baseline+ST+TT	38.61	47.19	32.80
baseline+ST+TT+TRACTA	44.00	53.63	37.31

- Different components are all effective for multi-camera tracking results
- Using all components achieves up to 12.72% on IDF1 than baseline

Conclusion

Main Contributions

- An efficient two-step MTMCT method for city-scale multi-camera vehicle tracking
- The semantic attribute parsing for tracklet affinity measurement
- A spatial-temporal attention mechanism to generate a robust representation for each tracklet.